Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses
نویسندگان
چکیده
BACKGROUND While emerging diseases are affecting many populations of amphibians, some populations are resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae) collected in the field with their natural microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to determine the relative contributions of these defenses. RESULTS Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease outbreaks or population declines have been detected at this site. Thus, this population was immunologically primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus was detectable in both toe-clips and internal organs. CONCLUSION Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection. Tolerance of Bd or ranavirus infection may differ with ecological conditions.
منابع مشابه
Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis.
One issue of great concern for the scientific community is the continuing loss of diverse amphibian species on a global scale. Amphibian populations around the world are experiencing serious losses due to the chytrid fungus, Batrachochytrium dendrobatidis. This pathogen colonizes the skin, leading to the disruption of ionic balance and eventual cardiac arrest. In many species, antimicrobial pep...
متن کاملImmune defenses of Xenopus laevis against Batrachochytrium dendrobatidis.
Amphibian populations are declining at an unprecedented rate worldwide. A number of declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis. Although amphibians have robust immune defenses, many species seem to be very susceptible to infection by this fungus and to development of the lethal disease called chytridiomycosis. One species that is relatively resistant t...
متن کاملEffects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs.
Environmental contaminants and disease may synergistically contribute to amphibian population declines. Sub-lethal levels of contaminants can suppress amphibian immune defenses and, thereby, may facilitate disease outbreaks. We conducted laboratory experiments on newly metamorphosed foothill yellow-legged frogs (Rana boylii) to determine whether sublethal exposure to the pesticide carbaryl woul...
متن کاملDefects in Host Immune Function in Tree Frogs with Chronic Chytridiomycosis
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused mass mortality leading to population declines and extinctions in many frog species worldwide. The lack of host resistance may be due to fungal immunosuppressive effects that have been observed when Bd is incubated with cultured lymphocytes, but whether in vivo host immunosuppression occurs is unknown. We used a broad ra...
متن کاملGene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis
Chytridiomycosis, the disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has devastated global amphibian biodiversity. Nevertheless, some hosts avoid disease after Bd exposure even as others experience near-complete extirpation. It remains unclear whether the amphibian adaptive immune system plays a role in Bd defence. Here, we describe gene expression in two host specie...
متن کامل